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A mixed spectral and finite difference model to study finite amplitude baroclinic 
waves in a differentially heated rotating annulus is presented. The model consists of the 
full NavierStokes equations and the heat equation. The field variables f = f(r, 4, z; t) 
are decomposed into zonally averaged components fo(r, z; t) and eddy components 
f’(r, 4, z; t), the latter being periodic in 4 and represented in terms of Fourier series. 
The unknowns f,,(r, z; I) and f”,“(r, r; t), which are Fourier amplitudes of f’(r, 4, z; t) 
are governed by two-dimensional primitive equations with the addition of source 
terms. These equations are solved semi-implicitly by the alternating direction implicit 
method on variable grids. 

A simplified model with two Fourier components which permits self-interaction of 
the chosen wave and the interaction of the wave and the mean fields had been used to 
repeat a computation done by G. P. Williams, who used a fully three-dimensional 
tinite difference algorithm. We can reproduce almost all of Williams’ results in l/20 of 
the computing time with the present model. It only requires l/30 the additional com- 
puter storage of Williams’ finite difference model over the axisymmetric problem. 

The potential of the present model for investigation of multiwave interaction as well 
as the advantages and disadvantages of the two different approaches is discussed. 

1. INTRODUCTION 

Hide [8] and Fultz [5] showed that when the side walls of a vertical rotating 
annulus of fluid are differentially heated, one of four distinct states of flow will 
arise, depending on the imposed rotation rate and temperature differential: 
(1) axisymmetric flow, (2) turbulence, (3) steady waves, and (4) unsteady waves. 
In this paper, an efficient numerical algorithm to study the development and 
structure of finite amplitude annulus waves is presented. 

Two algorithms have been developed to study this particular problem. Williams 
[23, 241 used a three-dimensional finite difference scheme to study an annulus wave 
of azimuthal wavenumber 5. Dietrich [2] used an algorithm based on Gale&in’s 
technique to study baroclinic flows in a rotating, differentially heated straight 
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channel with a rigid lid (a narrow gap approximation of the annulus). Making 
use of the simple channel geometry, he was able to exploit symmetry to reduce the 
total amount of computation. 

Why, then, a third algorithm to accomplish a task that has apparently been 
resolved by two authors? Dietrich’s approach works well for his channel model, 
but it is not clear how efficiently it will work in an annulus geometry. Williams’ 
three-dimensional finite difference scheme is inefficient for several reasons: (1) It 
requires very large computer storage since it is a fully three-dimensional system 
in space that also requires storage of variables on two time levels. The model 
presented here reduced the storage requirement by (a) using a scheme with one 
time level, and (b) transforming the system into a larger one but with only two 
independent spatial variables. (2) Williams’ scheme is completely explicit; there- 
fore, the time step is very much limited by the diffusive time scale. If the diffusive 
terms are treated implicitly or semi-implicitly one can use larger time steps. 
(3) The odd and even time steps diverge in Williams’ computation. This divergence 
can also be eliminated by using an implicit or other appropriate schemes. 
(4) Constant grids are inefficient for boundary layer flow. Variable grids are more 
economical. 

Furthermore, it is well known that the annulus waves are very regular and have 
distinct wavenumbers in the azimuthal direction. The most intriguing question is 
whether one can fully exploit this characteristic and simulate a three-dimensional 
annulus wave using only one dominant spectral component in the algorithm. 
If this can be accomplished, one could extend the model to study the interactions 
of a number of waves, and hopefully, other more complicated phenomena. 

2. FORMULATION OF THE PROBLEM 

Let us consider an annulus of standard geometry with inner radius Y,, outer 
radius rl , and height H, as shown in Fig. 1. The annulus has perfectly conducting 
outer and inner walls, which are to be maintained at constant temperatures 
To * 0~12, and is filled with an incompressible fluid of kinematic viscosity v 
and thermometric conductivity K. The whole system rotates about its vertical 
axis at an angular velocity G%, antiparallel to gravity -gff. Then the governing 
equations of the fluid in the rotating frame of reference with Boussinesq approxi- 
mation are 

&v+2Qk xv= -~vp--$(gb-g2B’v1k x rj2) -vv xvxv, 

v.v=o, 
(D/Dt) T = icV2T, 

p = p(O){1 - a(T - T(O))}, 

581/20/4-5 
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FIG. 1. The physical system. 

where V is the velocity vector, p is the pressure, p is the density, which depends 
linearly on T, the temperature of the fluid; all are functions of the position vector r, 
and time t. T(O) and p(O) are the reference temperature and the corresponding density 
of the fluid. 

The centrifugal term O*V 1 is x r I2 will be neglected under the formal condition 
that Pr/g << 1. The neglect of this term is necessary in order to be consistent with 
the neglect of curvature on a free surface, although the term may have a noticeable 
effect in the lower transition region where Sz is large [12]. 

For computational convenience, the above equations in cylindrical polar 
coordinates (Y, 9, z) are nondimensionalized as follows, where (*) denotes non- 
dimensional parameters. 

v = (252L) v*, t = (2Q)-1 t*, r = Lt* 7 
P* = {(p -p(O)) p’0’ + gz(1 + aT(09}(2QL)-2, 

T= T’O’+AT.T*, 

L = (fl - ~3, 

where p(O) represents some constant surface pressure. 
In flux form the equations for the nondimensional velocity components 

(u*, v*, w*) and temperature T* are (with * dropped) 
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zz= -f~++-;+;+), 

* 
-$w+~$(ruw)+~~(uw)+~w2= -2++T+eV%, 

r a4 
(3) 

(4) 

The boundary conditions are 

u=v=w=o at r = A,, 1 + A2 and z = 0, 
aupz = av/az = w = 0 at z = A,, 

T= -J-k atr= 1 +A,, 
= AZ, 

aT/az = 0 atz=O,A,, 

where 

A, = H/L, 0 <z d A,, 

A2 = r,lL, A, < r < 1 + A2. 

(6) 

The nondimensional parameters are 

E = v/(2J-2LZ), the Ekman number, 
/3 = ag AT/(4@L), the thermal Rossby number, 
U = V/K, the Prandtl number. 

They specify the Rayleigh number = ag AT H3/(~v) = CT/%-~ . A13, which is 
reduced to c$-~ when Al = 1 as used later in this paper. One nondimensional 
period of rotation is equal to 47r. The Rossby number U/(2QL) is equivalent to 
the largest nondimensional azimuthal velocity r of the final result. 

3. THE MEAN FIELD AND FOURIER AMPLITUDE EQUATIONS 

We shall decompose the field variables f = (u, r, w, T, p) into two parts: 

f = f,tr, z; t> + f’k, 9, z; t>, (7) 
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where f, is a mean field vector. It is defined as 

fo = (1/27-r> f’ fd4 = (~0 , vo , wo , To ,po). @a) 

f’ is not necessarily small but is periodic in C#J. Hence, it can be further decomposed 
into Fourier components as follows. 

f’(r, 4, z; t) = d\/z c {fkc(r, z; t) cos k+ + fks(r, z; t) sin k+}, @b) 

where 
k 

fk” = c&i’, ok’, wkc, Tkc, Pk’), (84 

fk” = +ks, uk’, wk’, Tk”, PkS), (84 

which are consistent with @a). 
If we substitute (7) into Eqs. (l)-(5) and integrate these with respect to I$ from 

0 to 27r, we obtain the mean field equations 

2 + ; g (rz.4~) + g (uowo) - @u, - uo/r”) 

- 2+(1+$) -- 00 - f ; c (e&c)2 + &rs)2) K 

- ; c (U,%J,C + u,“w,“) + ; c ((v,c>2 + (%R>2), K K 

= - f$ + /3To - i g c (ruMewKC + ruKswKs) 
K 

(9) 

- g c ((wKc>2 + (wKs)2), K (11) 
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= - 5 $ c (ruKcTKc + ruKsTKs) - 2 c (wKcTKc -I- wKsTxs), (12) 
K K 

where @ = ((l/r)(a/&) r(a/%) + (~2/i3z2)) is two-dimensional Laplacian. The 
boundary conditions are the same as(6), where u, v, w, T, and P are replaced by 
u~,~~,w~, To, andf’,. 

To obtain the eddy amplitude equations, we again substitute (7) into Eqs. (l)-(5). 
The amplitude equations for wavenumber j are obtained by multiplying through 
the resulting equations by cos j+ or sin& and integrating them from 0 to 2rr. The 
equations for the jth component are as follows. 

j, ; (uow;‘” + Wo”,y) + g (wyv;~s)~ + J+“c*s (W)$ ) (16% W 



448 CHARLES QUON 

(l&b) 

The boundary conditions are 

at r = A,, 1 + A, and z = 0 

a a 
- &” zzz - vC.8 = wF,” = 0 
az 3 az 5 3 atz= A,, 

T”.s = 0 3 at r = A,, 1 + A,, (19) 

; T,?” = 0 at z = 0, Al. 

The terms 4 represent the nonlinear wave-wave interactions, which consist of 
components of wavenumbers n and m, such that [ m - n / = j for 1 < j, m, n < K, 
and where K is the highest wavenumber included in the computation. Under two 
conditions, Jv; may be set equal to zero: (a) when only one wavenumber is 
considered; (b) when more than one wavenumber is considered, but no sum or 
difference of any two of these wave numbers is equal to a third. The discussion 
below is primarily for case (a), although it automatically covers case (b) 

The decomposition technique is standard and had been used previously in 
different context by Gilman [6]. 

4. METHOD OF SOLUTION 

The mean field equations (9-13), and the amplitude equations (14)-(B) depend 
on r, z, and t. We have increased the number of unknowns to (5 + 1O.Q where J 
is the number of azimuthal waves to be included, but have reduced the spatial 
dependence from three to two variables. 

The equations are solved numerically by the finite difference method on variable 
grids. The momentum equations are solved semi-implicitly line by line in alternate 
directions (ADI) [22]. The temperature equations are solved as follows. The 
advective terms are represented by a variant of Roberts and Weiss’ [19] angled 
derivatives and solved by fractional time steps. The diffusive terms are then solved 
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by ADI. Variable grids introduce variable coefficients into the pressure equations 
[see Eqs. (29b) and (30) below], which are elliptic, and the equations are solved 
by AD1 with variable acceleration parameters. For each time step, the time 
dependent equations are interated once. The pressure equations are iterated four 
times. 

In Section (a) variable grids through coordinate transformation are introduced. 
In Section (b) the net and the finite difference approximation to the differential 
equations are described; the finite difference equation for the zonally averaged 
pressure, p0 , is formulated explicitly. In Section (c) the computation procedure 
is given. The complete set of transformed equations and their finite difference 
representations are given in the Appendixes A and B. 

(a) Variable Grid through Coordinate Transformation 

Variable grids are introduced implicitly into the computational scheme through 
a change of coordinates in the equations. This method has been discussed by 
various authors [l, 9, 18, 201. 

Consider the coordinate transformation from r + f(r), and z -+ q(z) in the 
equations. If .$ and 77 are not linear functions of r and z, a net of constant grid 
intervals in the 517 plane will correspond to variable grids in the r-z plane. 

Following [ 181, we make the following transformation. 

5(r) = CL + 1) + CL - 1) . Wbl + xWMbl - x(r))) ___ ____ 
2 2 Wbl + Mb1 - al)> ’ 

Wa, b) 
B(z) = W + 1) + W - 1) . W(b2 + JW/(b2 - Y(Z)>) ___ ____ 

2 2 lnKb2 + a2Mb2 - a2>> ’ 

where 

x = r - (A, + $)), Y = z - 64zm, 
a, = 4, b12 = al%1 - d&A 

a2 = A&, b22 = a22/U - (d2/a2Ns 

L and N are the end points of 5 and 7 and are assigned integral values here, and 

4 -c al , dZ < a2 . 

When dI and d2 approach zero, the grid points in the r, z plane become more 
compact near the boundaries. Figure 2 is a plot of 8 versus x with dI = 0.15, 
L = 25. Note that 8 takes on integral values from 1 to L. Roberts has explained 
in detail the advantage of the above choice of functions. The transformed equations 
are given in Appendix A. 
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FIG. 2. Transformation of x into 5. Note that integral numbers of 5 from 1 to 2.5 correspond 
to fractional values of x from 0 to 1, & = 0.15. In the computation, de = AT = 1. 

(b) The Net and Finite D@erence Formulation 

The net is depicted in Fig. 3. The cross section of the annulus is divided into 
uniform square cells on the 5-7 plane. At the center of the cells the variables V, 
T, and P are defined. At the midpoints of the cell walls, the normal velocities are 
prescribed. Boundary surfaces of the annulus are placed along the cell boundaries. 
The net is extended a fraction of a grid distance beyond each physical boundary. 
As suggested by both Roberts [18] and Kalnay de Rivas [9], the outermost grid 
points are placed at the same distance from the physical boundaries as the first 
inner grid point within the boundary. The variables on the outermost grid points 
are determined from the second outermost points and the boundary conditions. 

Jt-+-i- 
-BOUND&RI 

b-8----- 

f-. ‘3 c -i 

FIG. 3. Relative positions of the variables on staggered grids. 
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We shall represent time and space by t = v At, 6 = i A[, and 7 = k A?, 
where V, i, and k are integers; At = Aq = 1 are spatial grid intervals: and At 
is the time step. For compactness, the following contracted notations are used. 

fO, 7; t) =f(i&, k4; vAt) =$A, 

&+fu+W = (f~+W) - fy(At/2), 

st+p+l = (f”+l - f”‘-“l”‘)/(At/2), 

Mk = @,f>ik = (“6+(1/2)Jc -fi-f1,2d 

&chk = @,f)ik = &c+(1,2) -.fik-(l/2)), 

zk = (h+h,z),Ic +J:- z (1/2LkN2> G = L+h/2) + fi.k-kd/2, 
I, = afl&, K, = arllaz. 

(2 

Only the mean pressure equation will be derived in detail here. The other 
equations are given in Appendix B. 

We have, from Eqs. (A.ll) and (A.13) in Appendix B, 

6 + v+(1/2) t uo = EK~S~(K~S~U~)“+(~‘~) + l Z,S,(I,/r S~ru,)” 

4&;+:(1/2) + Rue” + W), 

S t uo + “+l = •KZSk(KZSk~o)V+(1’2) + d,Sr(lr/rSlruo) “+l 

- I$$;+(1/2) + Ru; + Wit), 

&+w:+(~‘~) = EK,S,(K,S~W~)” + •Z,SI(rI,S~wo)v+(1’2) 

- Kz$p;;+(1/2) + Rw; + O(At), 

st+wv+l 0 = EK,S,(K,S,W,)“+’ + rI&31(rIrS~wo) V-t(1’2) 

- Kzskp;+(112) + Rw; + O(At), 

(224 

(22b) 

(234 

(23b) 

IT/r S1(ruo)“+l + KzSkwf;+z = 0, (24) 

where Ru, and Rw, are contracted notations for the rest of the terms in 
Eqs. (A.lla, b) and (A.l3a, b). The advective terms, which are formulated semi- 
implicitly in Eqs. (A.1 1) and (A.13), have been assumed to contain velocities at 
the vth, instead of the (v + &)th time step. An error O(At) has been thus introduced. 

If we subtract (22b) from (22a), and (23b) from (23a), and rearrange terms, we 
have 

y+(1/2) 
uo = + (u;;" + u,y) 

+ (6 At/b) ZTSI(IT/rSIr{u,Y - u%‘} + O(At2), (25) 
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v+(1/2) _ 1 
wo -2 (w;;" + wo? 

+ (~dt/4)Kz6,K,6,(w," - w;+y + 0(&q. (26) 

Now add (22a) to (22b) and (23a) to (23b): 

(24;” - u,“)/Ll t = •KZSkK&4~+(1’2) + dTSIZT/r S1{r(f.&+l + uo”)/2} 

- I,Q;+(lf2) + Rue" + w 0, (27) 

(w;+l - w,")/d t = EK,S,K,S,{(W~+~ + w,")/2} + e&./r SdTS1w~+(1’2) 

- KzSep;+(lfs) + Rwo” + O(b). (28) 

To obtain an equation for p;‘“‘2’, substitute (25) and (26) into (27) and (28). 
Operate on (27) with (Iv/r) S&s), on (28) with K,S, , and use the finite difference 
divergence and Laplacian operators 

to obtain 

F * V, = I& S&u,) + K&w, , 

F2po = 4lr Sh%p, -k KzS,KzSkpo 
Wa,b) 

y2 v+(1/2) 
PO = I& S1(r * Ru,,“) + K&Rw,“) 

+&+;s2+ y IT/r S1rI,&KzSkKz) ?? - Vov (30) 

- 
( ZJr S1rI,&KzS,Kz) !8 * Vi+' + O(b). 

We use the accepted procedure [7] to force the unknown velocity in (30), V;+l, 
to satisfy the continuity equation Y? * Vi+:’ = 0, but to retain Tp - V,” = So”, which 
is nonzero but small. To be consistent with the approximation in the advective 
terms, we shall discard O(dt) terms in (30); thus, 

%‘2p;;+(1f2) = I& S,(rRu,‘) + KzS,Rwov 

+ (1 + q P)(Bo~/At) + O(h). (304 

We note that V2 in (29b) has variable coefficients (1,. , K, depend on the spatial 
coordinates). There are various ways to solve the elliptic equation (30a). For 
example Swarztrauber’s [21] modified Buneman’s elliptic solver is quite efficient. 
But AD1 with variable acceleration parameters [22] is almost as efficient, and 
simpler. The pressure of the previous time step, ~l;-‘l’~‘, is used as the initial value 
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to start the iterations. It has been found that four iterations of the AD1 give 
sufficiently accurate results in the range of physical parameters we are interested in. 

The boundary conditions for p;+(r”) can be obtained from (27) and (28) as 
follows. 

On the vertical walls u = v = w = 0 at all times, and (27) reduces to 

&p;+(1f2) = ES,{IJT s+;) + O(h). (31) 

Similarly, on the horizontal boundaries (28) reduces to 

6kp;+f(1’2) = ES~{KZS~W()“} + PT,” + O(@. (32) 

The second derivatives of the normal velocities on each boundary are required 
in (31) and (32). The calculation of these second derivatives requires the first 
derivatives. More explicitly, either 1,/rS,(ru), or K&w is required immediately 
outside the boundaries. To obtain these undefined quantities outside the boun- 
daries, we let the divergence at the grid points immediately outside the boundary 
assume some value D, i.e., 

K./r) Wu,) + ULw, = D. 

Outside the vertical boundaries, K&.v,, is known. If D is given, I,./rS,(ru,) can 
be computed from the above equation. Similarly, outside the horizontal boundaries, 
I,./rS,(ru,) is known. K&w,, can be calculated. Again we follow [7] and set D = 0. 
Although other possibilities have been tried, e.g., the normal gradient 
@/%X~ * VCJ = 0 or Tp * V, = 0 on the boundaries, neither of these conditions 
affects the final result. The physical explanation is that the nonhydrostatic pressure 
in an annulus is largely determined by the shear of the zonal current and density 
stratification in the interior. They serve as sources of the potential, p, in Eq. (30a). 
When E is sufficiently small, the two terms containing E in (31) and (32) do not play 
a strong role in determining the solution of (30a), although they serve as part of 
the boundary conditions. 

The equations for pjO and pi” can be formulated in a similar way (see 
Appendix B). 

(c) Procedure of Computation 

The following procedure of computation is recommended for problems con- 
taining one or more waves. First, integrate the mean field equations to some 
advanced state (not necessarily the steady state). Perturb the Tc*” equations with 
a random field of almost arbitrary magnitude [perturbation O(1O-s) to O(lO-2, 
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vs the maximum side wall temperature 10.5, have been used]. After integrating 
the whole set of equations a few rotations beyond the perturbation, finite amplitude 
waves should develop. This seems to be the most natural way to introduce a 
perturbation. Certainly it saves overall computing time. Williams [23] and Dietrich 
[2] also used similar procedure in their computations. The fully developed wave 
solutions of one set of parameters have also been used as the initial condition to 
obtain finite amplitude waves for a different set of parameters. Unless the final 
state for the new set of parameters will be close to the initial condition used, this 
procedure is not recommended because large-scale oscillation is bound to be set up 
which can persist for a very long time. In general, it is not too time consuming to 
advance the two-dimensional computation to a reasonably steady stage in com- 
parison with the rest of the computation after perturbation. 

5. STABILITY PROPERTIES OF THE ALGORITHM 

The full set of equations as given in Appendix B is too complex to analyze for 
stability criteria. We can, however, make some heuristic statements on the stability 
properties of the algorithm, and verify their validity by numerical experiments. 

Theoretically, the most serious limiting factor, namely the diffusive time scale, 
has been removed by treating the diffusive terms implicitly. The Courant- 
Friedrichs-Lewy condition for advection, i.e., dt < Ax/W, remains one of the 
necessary conditions to observe, although in practice, u and w are too small in 
this problem to cause concern. It turns out that the time step is limited by the 
inertial waves whose period is of order half the rotational period of the annulus. 
A simple calculation gives this limit. Consider the following coupled equations 
on staggered grids: 

v+l 
uk - uk ’ = 42 (vkY + &+A 

vk 
v+lvu v- k - -At/2 (u;?; + uyk+‘). 

If the kth Fourier components uky = peikAx, vkv = TveikAx are substituted into 
the above equations, the amplification matrix [ 171 is obtained: 

Wk k) = (ya(l 
1 a(1 + eiAZ) 
+ e-iAac) 1 - 201~(1 + cos Ax) 1 ’ 

a = At/2. 

The eigenvalues for G(At, k) are 

h+ = 1 - (a2y2 f ay(a2y2 - 4)1/2)/2, 
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FIG. 4. (A) Stability curves for numerical experiments of three different values of o. All 
other parameters are the same as Williams’ case given in Section 7. (B) Amplification and/ decay 
of inertial waves, depending on whether At is larger or less than 2.0. The data points are from 
consecutive time steps. 
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where 
yz = 2(1 + cos LX) < 4. 

For computational stability we require XX* < 1, or 0 < CII < 1, which is equivalent 
to 0 < dt < 2. Thus, dt has to be equal to or less than, 2. 

The results of a series of numerical experiments are given in Fig. 4A. The graphs 
show the number of cycles N(dt), for which the computation “blew up” as a 
function of the time steps d t. The upper limit for computational stability is unmis- 
takably at d t = 2.0, as predicted. Note that for all three values of u, the compu- 
tations as shown in Fig. 4A are stable up to 100 time steps at At = 2.0. No experi- 
ments were carried out beyond 100 time steps. 

To show that inertial waves are indeed responsible for the instability, we have 
plotted in Fig. 4B the radial velocity u as a function of time at a point I = 24, 
k = 24 in a 26 x 26 grid, that is, a point at the upper right-hand corner next 
to the hot wall. The three curves correspond to three values of At = 1.95, 2.15, 
and 2.35. Only the first few cycles of the computation are plotted, but this is 
adequate to demonstrate the effect of various values of At. It is clear that waves 
of comparable amplitude and period are initially excited in all three cases. The 
periods are all of order 27r, half the rotational period. In the two cases where At 
is larger than 2.0, these waves grew very rapidly without bound, while in the case 
with d t = 1.95, the wave decayed slowly. In the computation that yielded the 
results discussed below, d t was taken to be 1.40 for the two-dimensional compu- 
tation (mean field equations only) and 0.90 for the three-dimensional computation. 
At the time of the computation, it was necessary to choose the d t values prudently 
because there was very little experience on how the whole system would behave 
in a long computation. 

6. SCOPE OF NUMERICAL EXPERIMENTS 

Four separate numerical experiments with one wavenumber were carried out. 
The first three experiments were exploratory in nature. They were done on 
exceedingly coarse, and nearly constant, grids but they have helped to establish 
the computational procedures. Although the results of these three computations 
are not sufficiently accurate to give details of the flows they exhibit all the charac- 
teristics of baroclinic waves. The energetics compare very well with those found 
by Pfeffer et al. [15] in the laboratory. 

The fourth case is a repeat of Williams’ computation. The purpose is to ensure 
that the present algorithm produces the main feature, if not all, of Williams’ 
three-dimensional results. 

In the next section, we shall examine the results of this particular case in detail. 
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7. COMPARISON OF NUMERICAL RESULTS 

Williams has already described the three-dimensional structure of steady annulus 
waves. It is not the intention to repeat these analyses here but only to show that 
the present model can reproduce all the main results generated by Williams’ 
three-dimensional finite difference scheme. Thus, the following important question 
concerning the present model is answered in the affirmative. Can one wavenumber 
adequately represent at least the most simple three-dimensional flow, i.e., a steady 
traveling wave? 

The set of nondimensional numbers used for the computation is /I = 0.13125, 
E = 6.9997 x 10-4, u = 7.0986, A, = I, A, = $, Ra = c&-~ = 1.90 x 106, 
which are very close to Williams’ parameters. The coordinate stretching parameters 
are 4 = dZ = 0.15. The net consists of 26 x 26 grid points. If we take 
~~1~ = 2.65 x 1O-2, Ra-li4 = 2.69 x lO-2 as the order of magnitude of the 
horizontal and vertical boundary layer thicknesses, we have about two grid points 
within the maximum of each boundary layer. The total number of grid points 
may seem very moderate, but it is equivalent to the number of points that a net of 
50 x 50 constant grids can provide to the boundary layers. Hence, the resolution 
in the boundary region should be comparable to the 32 x 32 constant grids used 
by Williams. Figure 5 shows plots of (A) the vertical velocity and temperature 
at z = 0.62 near the cold wall, and (B) the Ekman boundary-layer velocities off 
the lower boundary. The plots show the distribution of grid points in the boundary 
layers. We note that the “eddy” fields (indicated by superscripts c and s) are com- 
parable in magnitude with the zonally averaged fields (subscripted 0). This clearly 
shows that the waves are of finite amplitude. The linearized theories of baroclinic 
instability, which assume infinitesimal waves, may not be able to explain all the 
computed results. 

To compare Williams’ results, the velocity fields must be multiplied with the 
characteristic U = 2QL = 4.80 cm/set, and the stream function with I/J = 2QL3 = 
43.2 cm3/sec. It is not as straightforward to compare the pressure fields, as will 
be explained later. 

a. The Axisymmetric Fields 

The axisymmetric fields are computed from the complete two-dimensional 
Navier-Stokes equations and the heat equation, i.e., Eqs. (9)-(13), with the self- 
interaction terms containing uic, ujs, etc., deleted. The question of whether one 
wavenumer in the third dimension is adequate or not is not involved in a two- 
dimensional computation. Consequently, any differences we may find between 
Williams’ and our results can be totally attributed to the difference in the numerical 
approximation. 

Figures 6a-6f show the stream function #, normalized temperature T, zonal 
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E”” = 2.65 x IO-’ 

FIG. 5. (A) Vertical velocity and temperature components in the vertical boundary layer near 
the cold wall are plotted as functions of the stretched coordinate 7 = xA114, A being the Rayleigh 
number, and as functions of the variable grids i = 1, 2,... superimposed on the x axis, the radial 
distance from the inner wall of the annulus. Note that the range of x is 0 < x < 1. The boundary 
layer is about l/10 the width of the annulus. There are about five grid points in the layer. (B) 
Horizontal velocity components u and u in the lower Ekman layer in the inner sector of the annulus 
are plotted as functions of the vertical stretched coordinate 5 = ze-lj2and also as function of the 
variable grids, k = 1,2,.... There are about five grid points in the Ekman layer. 
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b T 

d P 

FIG. 6. Contour plots of field variables for the two-dimensional (axisymmetric) computation. 
The maxima and minima of each field are given. Contour intervals are (Max-Min)/lO for each 
field. At least one contour line is identified in each diagram. #max = 0.0, $min = -6.70 x 10-4; 
T ma,x = 0.50, Tmi, = -0.50; vm'max = 1.04 x lo-l, F’min = -1.80 x 1O-2; Pmax = 6.14 x 10-2, 
Pmin = -1.70 X lo-'; Urnax = 7.38 X 10m3, Umin = -8.07 X IO-‘; Wmax = 8.38 X 1OM3, 
wmin = -1.44 x 10-2. 

velocity v, and dynamic pressure p; and the radial and vertical velocities, u 
and w. 

The first four diagrams are arranged in the same order as Williams’ [4, Fig. 4a] 
for easy comparison. Except for the obvious differences in the pressure field, which 
we shall discuss later, the qualitative agreement in the shapes of the stream lines, 
isotherms, and isotachs for the zonal velocity is good. 

Perhaps the most meaningful quantity to compare with that of Williams is the 

581/20/4-6 
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zonal velocity. The nondimensional maximum is 0.104 (which is also the Rossby 
number) and the minimum is -0.018, which correspond to 0.501 and 
-0.085 cm/set as compared to Williams’ values of 0.52 and -0.08 cm/set, 
respectively. 

The stream function is obtained from the simple formula 

In Fig. 6a, the nondimensional absolute maximum (lower right-hand corner) 
is 6.70 x 1O-4 or 2.89 x 1O-2 cms/sec as compared to (approximately) 
3.0 x 1O-2 cm3/sec in Williams’ computation. The three stream lines of the lower 
right-hand cell are, in ascending order, -2.59 x 10-2, -2.29 x 10-2, and 
-1.99 x 1O-2 cm3/sec vs Williams’ corresponding stream lines of -2.5 x 10-2, 
-2.3 x 10-2, and -2.0 x 1O-2 cm3/sec. It appears that Williams’ lower cell 
goes as high as -3.5 x 1O-2 cm3/sec, though only a very small area would assume 
this value. The outer two stream lines compare well with those of Williams in the 
upper left-hand cell, but the innermost stream line in Williams’ diagrams cover a 
larger area. In spite of these differences the general shape and curvature of both 
stream functions agree remarkably well. The numerical values of the corresponding 
isotherms are the same when scaled by a proper factor. The comparison one should 
make in the temperature field is the position of the isotherms. Most of the results 
of the two computations are virtually identical. 

The difference in the pressure field is due to the different ways the temperatures 
are defined in the respective computations. The normalized temperature used in 
the present model is defined as 

T* = (T- 5=)/AT, T = CT,, + Td/2, AT = (TV - T,) 

and Williams’ dimensional temperature is normalized as 

~~'=(T-T~)=(T-~-((T-T~). 

If we nondimensionalize T with AT, we have 

T;* = F/AT = T* + (Tl - T)/AT = T* + positive constant, 

since Tl > T. 
For geostrophic flow, the isobaric slope is given by 

(wwwaz),=const = --v/w*) 

for the present computation, and for Williams, it is 

(applar/ap/az),=,,,t = --v/p(T* + const). 



BAROCLINIC ANNULUS WAVES 461 

Therefore, in the interior where the dynamics are essentially geostrophic the magni- 
tude of our isobaric slopes ought to be larger than those of Williams. In comparison 
with our pressure field, Williams has an additional component linear in z, which 
is essentially hydrostatic. 

Radial and vertical velocities are contoured in Figs. 6e and 6f. If we take the 
outer contour lines of the velocities as the outer edges of the respective boundary 
layers, we have about five grid points across the layers at midpoint (also see Fig. 5). 

b. The Wave Fields 

(i) The zonally averaged (mean) fields. The zonally averaged fields of the wave- 
number 5 computation are depicted in Fig. 7. They are to be compared with 
Williams’ [24, Figs. 4b]. A visual comparison shows that the mean fields appear 
similar, except that (1) Williams’ maximum zonal current near the surface of the 
fluid is much closer to the inner wall, and (2) upper isotherms of the present com- 
putation shown in Fig. 7b are more detached from the boundary region in the 
upper left-hand corner. 

A quantitative comparison of &, and o0 is now given. $,, is calculated from u,, 
by (AJik = - C%, rJ(&h udi, 4. 

The maximum and minimum of &, are 3.80 x lop4 and -10.4 x 10-4, or 
1.64 x 1O-2 cm3/sec, and -4.49 x 1O-2 cm3/sec, respectively. There are nine 
contour lines between the maximum at the center of the middle cell and the minima 
at the centers of the side cells (the absolute value of the right-hand one is slightly 
larger). The contour interval is (1.64 + 4.49) x 1O-3 = 6.13 x 1O-3 cmysec. 
While the general positions of the streamlines seem to agree well with Williams’ 
[24, Fig. 4bi], in which the minimum in the lower right-hand cell is less than 
-5.0 x 1O-2 cm3/sec, compared to -4.49 x 10e2 cmysec in Fig. 7a, there is 
a difference of about 9 %. 

The maximum nondimensional zonal velocity, as shown in Fig. 7c, is 
7.365 x 1O-2 or 3.535 x 10-l cm/secvs Williams’ maximum of 3.0 x 10-l cm/set. 
The minimum inside the lower left-hand corner cell is -2.850 x 1O-2 or 
-1.368 x 10-l cmlsec. Williams’ minimum is between -0.08 and -1.2 x 
10-l cm/set. 

These comparisons do show differences in the absolute maxima and minima of 
both the meridional and zonal flows, despite the similarity in the general circulation. 
In evaluating these differences, we must also bear in mind that we are comparing 
two different avarages. To see the difference, we represent any of our fields by 

f(r, $3 z; t) = hJ(r, z; 0 + f’(r, $3 z; t>, 

and our mean fields are 
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Fro. 7. Contour plots of zonal averaged field. (See caption of Fig. 6 for details). ($&ax = 
3.80 X 10-4, (~%in = -1.04 x 1O-s; (T&ax = 0.50, (T&in = -0.50; (V&,x = 7.36 x 1O-2, 
(V&in = -2.85 X lo-‘; (P&ax = 9.38 x 1O-2, (P&in = 2.95 x 1O-2; (u&n,, = 1.00 x 1O-2 
(U&i* = -1.05 X 10m2; (W&,X = 1.25 X lo-‘, (Wo)min = -2.35 X lo-‘. 

We assume the integral off’ to be zero from the start. However, Williams’ results 
are 

fk, z; t) =h(r, z; t) . (l/Q9 f d+i + (l/Q) 5 f’(r, $, z; t) A& . 
2=1 i=l 

Even if f’ is truly sinusoidal, the last summation is not equal to zero because of 
truncation error. Differences in the averaged fields may be due to the different 
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averaging processes we used. Therefore, for a complex system like the present one, 
it is very difficult to assess the absolute accuracy of the results. 

Figures 7e and 7f show contours of the zonally averaged radial and vertical 
velocities. The most obvious difference between the axisymmetric and the mean 
flow appears in the meridional circulation, which has become a three-cell system. 
The bottom Ekman layer in the axisymmetric flow has been broken into two parts, 
each being associated with the two side cells. The dynamics of a similar three-cell 
formation have been examined in terms of its energetics [15]. 

(ii) The Fourier amplitudes. The Fourier amplitudes of the wavenumber 5 
computation are given in Figs. Sa-8j. Note that all Fourier amplitudes are time 
dependent. To have a complete picture of the cross-sectional structure, we must 
synthesize the total fields by Eqs. (7) and (8) for 0 d 4 < 2~15. Such a complete 
synthesis is not warranted here. We can, however, consider the cosine and sine 
components as the complete eddy components at different phases of the wave; 
e.g., at 5$ = 0 and ~-12. The structures of the wave are very different at each phase. 
Since quasi-geostrophic balance holds in the interior at all times, from Eqs. (14) 
and (15) we have the balance 

-(a/&) pj”,” N 2$‘S, f(j/r)p;*c N -u;.*. 

The first expression shows that the radial pressure gradient (ajar)pic(pjS) 
should balance the zonal velocity z+~(z+~), and the second expression shows that 
the contours of pjs( pi”) should be similar to those of ujc(ujs). The contours in 
Figs. 8b, 8c, and 8i and 8a, 8d, and Sj show these balances in the region away from 
the bottom boundary. The vertical velocity w;*‘, pressure pj”*“, and temperature 
T;ss are studied in the subsection below. 

Another noteworthy characteristic of the Fourier amplitudes is the obvious 
lack of dominant side boundary-layer structures, which are strong features of the 
mean field. 

(iii) Vertical and horizontal phase shifts. Some of the most prominent features 
of baroclinic waves are the phase shift with height in the pressure field, the hori- 
zontal phase shift of vertical velocity from pressure, and the positive correlation 
of vertical velocity and temperature. These relations were originally given by 
Eady [3] as results of a linearized inviscid theory of baroclinic instability. In 
general, our results do show all these characteristics of baroclinic waves. In 
Figs. 9a-9i, the plan views of P, T, and W (the total sythesized fields) at three 
levels of z, 0.04, 0.59, and 0.94, are given. One can readily observe that: 

(1) In spite of the distortion by the Ekman boundary layer at the bottom 
of the annulus, we can see, by comparing Fig. 9a with 9b, that there is a negative 
phase shift of about one-fourth wavelength in the pressure field from midlevel, 
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FIG. 9. The contours of the total pressure, temperature, and vertical velocity in the r-+ plane 
at three levels: z = 0.04, 0.59, and 0.94. Because of the crowding of many contour lines, two 
contour lines in each diagram are given. The contour intervals can be determined by the number 
of spacing between them. These three-dimensional fields are a synthesis of the field given in Figs. 
7 and 8 from Eqs. (7) and (8b). 

and that by comparing 9b and 9c the change from to midlevel the top is only 
barely perceptible. Williams [24] also showed similar relations. Eady’s linearized 
theory for a fluid with a rigid lid predicts a negative shift of one-fourth wave- 
length from bottom to top of the fluid in P. 

(2) If we compare T, Figs. 9d-9f, and W, Figs. 9g-9i, at the respective levels, 
there is a definite correlation between upwelling and high temperature, and down- 
welling and low temperature. This overturning in the zonal direction is the essential 
mechanism for conversion from eddy available potential energy to eddy kinetic 
energy in a baroclinic system. Pfeffer [15] observed that warm fluid rises ahead 
of the trough (low pressure) and cold fluid sinks behind it in the laboratory experi- 
ment as originally predicted by Eady [3]. This relationship also holds for the present 
results, as seen by comparing T and W at midlevel. 



466 CHARLES QUON 

(3) It has already been pointed out that corss-sectional contours of the 
pressure fields in Figs. 7d, 8i, and 8j are very different from those of Williams. 
The isobaric contours in the r-4 plane are, however, similar to his, because at 
a given z-level the difference is a constant and hence will not show up in the r-4 
contour. 

(iv) Wave Drif 

The drift speed of the waves is about 52130 compared with Q/24 found by 
Williams. This discrepancy remains unexplained at present, although it is well 
known that different finite difference approximation in time and space can introduce 
different phase errors of traveling waves [lo]. Perhaps only a laboratory experiment 
will show the relative accuracy of the computations. 

8. ASSESSMENT OF THE ALGORITHM 

For 26 x 26 grid points, the mean field equations take about 5 set, and the 
full set of equations takes about 17 set per time step on a CDC 6500. The Poisson 
and Helmholtz (pressure) equations consume about 25-30% of the total time. 
The nondimensional time step used for the computation of Williams’ case is 0.90, 
approximately l/14 of a rotational period, whereas Williams used a time step of 
about l/157 of a rotational period. 

For point-by-point computation, the present algorithm is naturally much slower 
than Williams’ algorithm for two reasons: (a) The equations are more complicated 
because of the variable grids. (b) The present scheme is semi-implicit. The variable 
at each grid point is calculated twice consecutively for each time step (in the hori- 
zontal and the vertical directions). 

There is a reduction in a computer storage requirement. Extending the compu- 
tation from two to three space dimensions, we require 10 fields for each additional 
wavenumber, while a fully three-dimensional two-time level finite difference 
scheme would require 10 x N fields, where N is the additional number of grid 
levels in the 4 direction. To study the structure of one single baroclinic wave, one 
needs only to have N large enough to cover one wavelength as Williams has done 
(Williams used N = 35 for wavenumber 5). To represent two or more waves 
adequately with a fully three-dimensional finite difference scheme, one must 
have enough grid levels in the 4 direction to cover the whole angular distance 
2~ instead of only one wavelegnth. Theoretically, with the amount of storage 
Williams used to calculate one single wave, we can accommodate 35 waves. But 
the computing time required for a 35-wave computation will be phenomenal, 
although the transformed method devised by Orszag [13, 141, Eliasen, 
Machenhauer, and Rasmussen [4], and Machenhauer and Rasmussen [l l] will 
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no doubt be efficient methods to use when a large number of spectral components 
are included. 

The total amount of computer time needed to obtain the results shown above 
for Williams’ case was about 7 hr on CDC 6500, which is much less than the 
approximately 150 hr Williams used on a Univac 1108. 

When only one wavenumber is used in the computation, all the higher harmonics 
are excluded, whereas they are automatically included in Williams’ computation. 
As the laboratory experiments have shown, higher harmonics contain very little 
energy in simple annulus waves [15]. They certainly become more significant in 
complicated flows. This study has shown that for the case studied here the contri- 
bution from the higher harmonics is very small. Williams’ finite difference algorithm 
has the distinct ability to start a computation without assuming what wave-number 
will dominate, while the present algorithm requires some prior knowledge. Con- 
sidering the vast amount of available data on annulus waves, this deficiency is 
not a great handicap. The strength of the present model lies in its capability to 
simulate a single or a small number of three-dimensional baroclinic waves efficiently 
in a simple container. 

9. CONCLUDING REMARKS 

The mixed spectral and finite difference model presented here can, with one 
wavenumber, reproduce the major results achieved by Williams [23,24]. It requires 
considerably less computer time and storage than previous models. 

The model offers the possibility of efficiently studying problems such as: 

(I) Location in parameter space of wave vacillation, wave dispersion, and 
similar phenomena. This is usually a time-consuming procedure. 

(2) Interactions in baroclinic flows between mean current and wave, between 
wave and wave, or between multiple waves. This model simplifies these studies 
because it permits the selection of numbers of waves and wavenumbers. 

(3) The energetic processes associated with different waves and their charac- 
teristics. 

(4) Energy cascade in geostrophic turbulence among selected wavenumbers. 
(5) Parameterization of baroclinic instability. A definitive solution of any 

of the first three problems will provide the basis for experiments in the parametri- 
zation of baroclinic instability. 

We have only begun to delineate the nonlinear dynamics of some of these rather 
intricate processes in rotating and stratified fluids. The present algorithm will have 
much to contribute in future investigations. 
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APPENDIX A: THE TRANSFORMED EQUATIONS 

If we transform the coordinates from r -+ c(r), z + T(Z), we transform the 
differential operators as follows. 

where 5,. = a[/ar, 7, = av/az. 
Equations (9)-(18) become the following, with the diffusive terms in (9) and (10) 
rewritten slightly differently: 
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The following equations correspond to Eqs. (14)-(18) in Section 3; j is the wave- 
number and hence an integer, and the following equations are called the jth 
component of the amplitude equations. 

(A.6a,b) 

(A. lOa,b) 
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The boundary conditions in (6) and (19) will be formulated in terms of the trans- 
formed coordinate in the finite difference form in Appendix B. The diffusive terms 
in (A.l), (A.6a, b), and (A.7a, b) are written slightly differently in order to form 
the forcing functions of the pressure equations directly, because some of the 
differential operators do not commute. It should become clear later. 

APPENDIX B: THE FINITE DIFFERENCE EQUATIONS 

1. The Momentum and Pressure Equations 

Equations (A. 1)-(A. 10) are the complete set of equations for an arbitrary number 
of waves. When we also allow these waves to assume arbitrary wavenumbers, a 
little ingenuity will be required to set up a numerical algorithm for Jtr. For only 
one wave as considered here, we delete the summation sign in (A.l)-(A.4), and 
set all nonlinear wave-wave interaction terms JV = 0 in (A.6)-(A.9). 

With these simplifications, and the contracted notations in Eq. (21), the finite 
difference equations are as follows (y = 6 to maintain O(St2) accuracy). 

(st+uo)“+‘l/2’ - EKzsI&(Kzs&)y+‘1~2) + Kzs&K”+“‘2’ . irol\ 

= &6,(1,/r Sgu,v)) - (2 - y) IV/r S,(ZO1” * G1”) - ITS1p~+‘1’2) + H,“, 

= EKzsk(Kzsrcu~+(1’2)) - K&u, * wo ) - zrsg;;+(1’2) + H,“, 

H,” = (1 + vj$) GIV - IT/r S,(rujc’ +I+rujsI . ug) 

- KzS,(*QK . ----I wjc + ujs -K . wj”‘)” + (l/r)((v,“)” + (Q+) 

(St+vo)y+(1’2) - 6(I,S1(I,lr Slrv~+(1’2))) + IT/r &(rui+l * $Y+‘l’a’) 

zzz EK,S,(K,S,V,“) - K,S,(w;+’ * v;“\ + H,” , 

(S,+V,)“+~ - EK,S,(K,S,V;+~) + K,S,(w;+l * 2-I,““+\ 

=z E(I,S,(I,/r S1rvi+(1’2))) - &jr S1(ru”,+l . v. 
-I”+“ia’) + H,’ ) 

H,” = - (gp+’ 
-Iv+1 

+ (uoIr ) . vo”) - L/r UW . $’ + rq.S ?I) 

- KzS,(wjc . G” + wjs . g”)“, 

(A.lla) 

(A.llb) 

(A.1 lc) 

(A.12a) 

(A. 12b) 

(A. 12~) 
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(8~-wo)“+(~“) - E&/Y s,(&&w;+“‘“‘)) + IT/r S,(G”‘” . iy2)) 

= EK&&S~W;) - (2 - y) K,S,(gK” G”\ - KzS,p;;‘(1’2) + I!&“, (A.13a) 

(st+wo)“+l - 
-KWl -K”+Ll/2) 

G$c(a,w;+l) + yKz&(wo * wo > 

= E(&./Y SI(r&.SIwv+(1/2))) - IJr S1(ruo -K”+1 G1”+““)) - &&p”+‘W’ + H3”, (A. 13b) 

-KU -K -I -K -I 
H3” = PT -I& S1(rujc . wjc + n.4j8 . wjs )” - ~,S,((wi”~)~ + (wjsK)2)v. (A.1 3c) 

Since the temperature equations are solved differently, we shall discuss them at 
the end. The pressure equation is as follows [Eq. (3Oa)]. 

v2pyo+(l12) = I,/r S,(rRu,,“) + K&Rw,“) + (1 + (~dt/2) V2(D,‘/dt) + O(ot), (A.14a) 

where 

RuOV = - I,/r S,(Gol” . &I”) - K,Sk(&K” GoI”) + H,“, (A.14b) 

Rw,” = - Z,./r S,(GoK” * To”) - KzSk(~oK” . hK”) + Hz”, (A. 14~) 

Do” = IT/r S1(ruo”) + K,S,w,“. (A.14d) 

The boundary conditions will be given after the temperature equations. 
The finite difference equations for the amplitude equations are as follows, 

with N = 0. 

-I”fl 
(St+~“~s)v+(l/2) - EK~S~(K~S~U~C’~)~+(~/~) + K,S,(w, 

_g”+Cl/Zl 
. uF,S 

3 3 > 
-I”+’ -I” 

= $S,(I,/r S,rujc*s)” - IJr S,(ru, . uy ) 

- 1;Sl(p;*~)v+‘1~2) + (G;;;)“, 

(St+~;.S)Y+l - d?S,(I,/r S1rujc*s)Y+l + Iv/r S1(Gol”+l . F’“+l) 
-I”+’ 

= •K~s~(K*S~uje.~)Y+(l/~) - K,S,(w, 
-K”+‘l,a, 

. &,S 
3 ) 

- IJ$(pjc~)v+(~~~) + (G;;;)“, 

(GE,;), = (1 + (2/r) o. -K”+l) . FK” f (&j/r) FK” + (ej2/r2) uF*@ 
---I”+1 -I” 

- I,lr 4(ruo . u;*~ ) f (j/r)(Gr+l * uj”ec + u;+l F’“) 

+ KBSk(<K”+1 . WY’;, 

(A.lSa,b) 

(A.lSc,d) 

(A.lSe,f) 
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(~t+u;lj8)v+(l/2) - ,(Irs~,Z7s,(~~.5/r))“+(1/2’ + I,/r S,(ru;+l ~l)v+(l/z) 

= •(K,s,Kzs,v;~s)” - K*S,(w;++l y -“p q= (j/r>(p;*c>“+(‘l”’ + (Gg;;y, (A.l6a,b) 

(S,+V;.q”+l - E(KzS,K~skf;~y+l + Kzs,(w;+l YpK)“+, 

= E(ITS,rI~S~(v;C’8/r))Y+(1/2) - J./r SI(ru;+l ujci)“+(‘!‘) 

F (j/r)(p;.C)l+‘1/2’ + (G,“;i”)“, (A.l6c,d) 

-I”+1 
(G$q)” = _ (1 + vi+l)(q ) _ (i$+j 

- 
( 

VW) + KzSk(~t;S” zjgKY+l) , (A.l6e,f) 

(~t+~;~~)y+W2) - @Jr S,rQIwf**)y+(1/2) + I,/r S1(;E;oI”+’ Wiff+(1’2)) 

-KY+’ -K” 
zzz EKzs,K,s,W;*8” - K,S,(w, . q.8 ) - KzSk(p;~~)v+(112) + (G;;;)‘, (A.lira,b) 

--Ku+1 
(s,+w;*q"+1 - EKzskK~W;~~"+l + KzS,(w, 

--KY+' 
. wf,S 

3 > 

= ,(I,/, S,rIpSIw~**)y+(1/2) - IF/r SI(gKv+l . WY -“+r1’a> 

- KzS,(p;~8)y+c1~2’ + (G;;;)“, (A.l7c,d) 

(Gg$” = - (ej2/r2) w;“~“” + fi Ti-3 -Kv - (I,&- S,(yqKY” . $“+j 

f. (j/r)(<K”+l * Wj”‘“” + w. F”‘, + K*slc(wgK”+l . WjCsK\), (A.l7e,f) 

where 
$52 = (I&’ S1rIrS1 + K,S,K,S, - (jz/r2)), (A.18c) 

G ,v+(lh) 
e5’ = (l/St) D;*8v + (e/2) V2Di*8v + J./r S,r(G,“f’ - H~jc**“) 

T W)(G,“:;” - Hz;*@) + K,S,(G,c;q” - H;;.a), (A. 19a,b) 

Di*“” = (J./r Srru;,8v & (j/r) v;*@’ + K,S,w,C~@‘), (A.l9c,d) 

V2 = (4/r hrG& + K,&X,S,), (A.19e) 
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Hl;ssy = IT/r S,(ru;+l TX> + K,S,(wt;+l FK), (A.20c,d) 

-Kv+l -1 

Hz;ssv = IJr S,(ru, 
-Iv+1 -KY 

w;‘” > + K,S,(w, . wc*8 3 )- (A.20e,f) 

2. The Temperature Equations 

Formally, Eq. (A.4) can be written as follows in terms of spatial finite differences 
[with the summation sign deleted from (A.4)]. 

Wt) To + M+W-uOT,) + J3dwoTo) - (+)W&(44) + &MG&~ TO 
= -I,./rS,(rujcTjc + rujsTj*) - K,S,(Wj”Tj’ + Wj”Tj”). (A.21) 

Multiply (A.21) by (r/I,K,) and define r = rTII,K, , U = ru, W = rw. We have 

@PO r. + W4d~&lr)1 + %A WOV’&/r)l 
- (+NW,lr) Wd,> + ro/r2 + h&U~oKz)) = KY, (A.224 

where 

H4” = -S,[ Uj”(I’j’Z,/r) + Ujs(rjsI,lr)] - S,[ Wjc(rjCKz/r) + Wjs(rjsK,/r)]. 

(A.22b) 
Equation (A.22a) is solved by fractional time steps [17]. 

s,r,* + ~,*[~,(~J,/r)l = 0, 

8,I’,** + S,**[W,(I’,K,/r) = 0, 

(A.23a) 

(A.23b) 

8 r** * - (E/u)(rS,(IJr) S,(F,* * *ZJ + rz * */P) t 0 

= W@JZS,<‘r6**KzN + H4y> (A.23~) 

8 r**** - (+)(S,K,S,(F,****K,)) t 0 

= (+>(rs,U,/r> s,(r,* * *z,) + r$ * */P) + H4y. (A.23d) 

Equations (A.23a) and (A.23b) are further solved by fractional steps simultaneously 
in two opposite directions as follows. 

J,rg) + ‘$,(u;+lrozJr)p = 0, i = 2,..., L/2, ) simultaneous 

8,r;y + ~I(U;+lroZJr)~l) = 0, i===L-1 
operation 

,...1 L/2 + 1, (A.24a,b) 
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s,q; + $(u;+lrozr/r)~2’ = 0, 
s,r;;) + F,(ci;;+T,vr)~“’ = 0, 

i = L/2 + l,..., L - 1, simultaneous 

i = L/2,..., 2, 
operation 

(A.25a,b) 

8,rg + ~k(w;+~roK,/r)~’ = 0, k = 2,..., N/2, 

i 

simultaneous 

a,rg) + ik(w;+lroK~/r)~~) = 0, k=N-I ,.,., N/2 + 1, operation (A.26a,b) 

8,r;:' + ~lc(WOy+lroKJp = 0, k = N/2 + I,..., 

8,r;;) + iJW;+iroKs/~)~) = 0, k = N/2,..., 2, 

where & ,z, and $ are defined as 

(A.28a,b,c) 

The operations in (A.28b, c) are similar to those discussed by Piacsek and Williams 
[16]. We found it necessary to operate from both directions simultaneously in 
order to retain symmetry in test runs with r, -+ co. This operation imposes a 
small constraint, i.e. the number of gridpoints must be even. 

Equations (A.23~) and (A.23d) are solved by the usual AD1 procedure, with 
the two, three, and four stars replaced by superscripts (4), (6), and (S), and defme 

8,rp = (r(6) - r(y(dt/2), $p = (r(s) - r(y/(dt/2). (A.29) 

If we add up Eqs. (A.24)-(A.27), (A.23c), and (A.23d), we have 

(r:) - r(o))/dt 

zzz - +(s,(uOy+lro)(l) + 8,(u;+lr,p) - g8k(w;+lr0)(3) + 6,(w0y+lro)(4)) 

+ (+wqz~r) s,(rpz,) + rplr2) + wm,K,q(rp + qw) . K,) 

+ Hqy, (A.30) 

where rp = rev, rp = r;+l. The different terms on the right-hand side are 
evaluated at different times within a time step as the fractional time-step method 
normally requires. 
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Equations (A.9a, b) are solved in a similar manner. If we define ri*’ = 
(rT,“*“)/(Z&), we have 

(~;:;y = - {s,[crjc~s~+l(rgy+lz~/y)l i (.j~r)(u;+vy~ + y+T;+q 

+ s,[wje,s”“(r~+lK,/r)]}. (A.3lc,d) 

Equations (A.31a, b) are solved by fractional steps as follows. 

8 rW + i,[u;+yqq/~)p = 0, i = 2,..., L/2, 
t 1 i = L - I,..., L/2 + I, 

8 r+z) + ii,ru,;+yryq~)p = 0, i = L/2 + l,..., L - 1, 
t I i = L/2,..., 2, 

8 r+) + ~,r~~+lcr~.s~~,~)~(3) = 0, k = 2,..., N/2, 
t 1 k = N - I,..., N/2 + 1, 

-a 
6 r+) + cSlc[~~+l(r~,~y,,,,u, = 0, k = N/2 + l,..., L - 1, 

t 3 k = N/2,..., 2, 

where 6 denotes two separate steps as before, but the operation is simultaneous. 
The rest of Equations (A.31) are solved by ADI: 

S:")r;,s - (e/u)(rS,(I,/r) sI(r;J6) zJ + qss(“)jr2 - (j2/r2) q,s@) 

= (~/u)(s,Kzsk(rjc.s(4) KJ) + (G;:;)", 

Spzy - (~/~)(s,K,s,(rjc,s(s) zc,)) 

= (c/u)(rS,(IJr) sI(r;,~ (6) I,) + I';+)/r2 - (j2/rz) ~~@) + (G;;;y, 
where 

58+314-7 
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3. Boundary Conditions 

Equations (6) and (19) show that the boundary conditions require either that 
the function itself be specified, &, = fi (the Dirichlet condition), or that its normal 
derivative be specified, (~~/&z), = fi (the Neumann condition), on the boundaries. 

For boundaries at, say, i = 0, between two grid points at i = i&, as those of 
v, t, p on all boundaries, those of u on the horizontal boundaries and those of 
w on the vertical boundaries, the approximation is as follows. 

Dirichlet condition: (41/z + LdP = .h 3 L/2 = vi - A/z > 

Neumann condition: (41/z - d-112) =A? > +-Ii2 = A/2 -.A * 

When the boundary coincides with the grid points, such as those of u on the 
vertical boundaries and those of w on the horizontal boundaries, the Dirichlet 
condition requires c$,, = fi . No Neumann condition is applied to grid points 
right on the boundaries in our grid system. 

4. Iteration Procedure 

All equations (except the advective parts of the temperature equations) are 
iterated semi-implicitly in the horizontal, and then the vertical, direction (or vice 
versa) to form one time step. The unknowns at three adjacent grid points are 
related by 

--Ad-, + &4, - G&+1 = Dz. 

All unknowns on each line are related by the matrix equation 

where A is a tridiagonal A4 x M matrix, C# a column matrix, and Q a row matrix, 
each containing A4 elements. The matrix A can be easily inverted with Gaussian 
elimination to solve for c#. For a detailed description of the standard AD1 
technique, see [22, p. 209, 19621. 

It is important to note that we have included on the left-hand side the advective 
terms of the momentum equations. If these terms are large in comparison with the 
diffusion term such that the diagonal elements are no longer dominant, the standard 
AD1 method used here will no longer be efficient. For this reason, we have to solve 
the temperature equations slightly differently. For some parameters, the advection 
of temperature is the dominant transport mechanism in some parts of the fluid. 
If we had used AD1 for the whole temperature equation, we would have to iterate 
a large number of times for convergence. In fact, there is no guarantee that con- 
vergence could be obtained for the highly nonlinear region of the fluid. 
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5. The Overall Order of Iteration 

The order in which we iterate the equations is 

to obtain an advanced axisymmetric field for each of the zero subscripted variables. 
Then introduce random field O(1O-2) as perturbation for Tc and T”, and iterate 
the whole set of equations as follows. 

u. --f w. -+ v. --+ To --f UC --t us --+ UC j. v” 

t- J 
pS~pC~po~TscTe~~vS~wC. 

6. Conservation of Quadratics 

In the absence of dissipation, it can be shown that the present algorithm conserves 
the quadratics of every field. Except for a slight displacement in time, the quadratics 
of temperature are conserved by straight summation over the spatial domain of 
integration [16]. So is the kinetic energy due to Coriolis and centrifugal terms. If 
these are called unconditional conservation, the conservation of kinetic energy 
(the quadratics of momentum) is conditional. The condition is V - V = 0 in 
finite difference form. 

It is too tedious to write down the quadratic form of all the equations. The 
quadratic conservation is equivalent to the time invariant of the kinetic energy and 
temperature square as follows. 

(apt) J(zq -+ v; + w. $ #ja + ~j”” + vj”’ + vj” + wj”” + wf> r dr dz = 0, 

(a/St) l(T,” + Ty + Tt) r dr dz = 0. 

7. Further Development 

It is worth mentioning that the algorithm for the temperature equation reported 
here is only one of the many possible combinations of fractional time steps and 
AD1 methods. This particular one is reported here because the results of this paper 
have been obtained from this algorithm. 

The algorithm for the nonlinear interaction terms is under active development 
The results will be reported in the future. 
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